Dual-Branch Network of Information Mutual Optimization for Salient Object Detection
نویسندگان
چکیده
Salient object detection (SOD) is to segment significant regions of images. Noticing that the saliency maps in existing SOD methods suffer from blurring boundaries owing insufficient extraction boundary features and inadequate fusion between salient region features, a dual-branch network information mutual optimization (DIMONet) proposed. The DIMONet has branch extract corresponding simultaneously mainly composed two components. One module (MOM) refines based on their internal relationship. other multi-receptive fields (FMMF) integrates multi-layer with refined distinguish objects better sharpen boundaries. With help MOMs FMMFs, noises background are gradually reduced hence get sharpened. Experiments five benchmark datasets show our method superior 18 state-of-the-art methods.
منابع مشابه
MSDNN: Multi-Scale Deep Neural Network for Salient Object Detection
Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whol...
متن کاملSalient Object Detection using a Context-Aware Refinement Network
Recently there has been remarkable success in pushing the state of the art in salient object detection. Most of the improvements are driven by employing end-to-end deeper feed-forward networks. However, in many cases precisely detecting salient regions requires representation of fine details. Combining high-level and low-level features using skip connections is a strategy that has been proposed...
متن کاملGraph matching vs mutual information maximization for object detection
Labeled Graph Matching (LGM) has been shown successful in numerous object vision tasks. This method is the basis for arguably the best face recognition system in the world. We present an algorithm for visual pattern recognition that is an extension of LGM ('LGM+'). We compare the performance of LGM and LGM+ algorithms with a state of the art statistical method based on Mutual Information Maximi...
متن کاملWeakly Supervised Learning for Salient Object Detection
Recent advances of supervised salient object detection models demonstrate significant performance on benchmark datasets. Training such models, however, requires expensive pixel-wise annotations of salient objects. Moreover, many existing salient object detection models assume that at least a salient object exists in the input image. Such an impractical assumption leads to less appealing salienc...
متن کاملSalient Object Detection: A Survey
Detecting and segmenting salient objects in natural scenes, also known as salient object detection, has attracted a lot of focused research in computer vision and has resulted in many applications. However, while many such models exist, a deep understanding of achievements and issues is lacking. We aim to provide a comprehensive review of the recent progress in this field. We situate salient ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3263179